
THE CONFORMATION OF 5-OXOCANONE EVIDENCE FROM 251 MHz ¹H AND 63 MHz ¹³C NMR

By F. A. L. Anet and Peter J.Degen

Contribution Number 3021 from the Department of Chemistry, University of California, Los Angeles, California 90024 (Received in USA 23 June 1972; received in UK for publication 28 July 1972)

Some time ago, Leonard, Milligan, and Brown¹ tentatively assigned a boat-boat conformation (I_{bb}) to 5-oxocanone (1-oxacyclooctan-5-one)(I), a compound with a potential transannular interaction of the ether oxygen with the carbonyl group. However, recent work has shown that simple cyclooctane derivatives,² including cyclooctanone³ and oxacyclooctane⁴ exist predominantly in boat-chair rather than boat-boat conformations.

We have now investigated the 1 H and 13 C nmr spectra of I at low temperatures and have obtained evidence which is incompatible with the boat-boat conformation, but which does fit nicely with the unsymmetrical boat-chair form (I_{bc}) .

The 251 MH ¹H spectrum of I at room temperature shows the presence of three chemical shifts. The lowest-field band, which can be assigned to the CH_20 protons, exhibits clear-cut changes at low temperatures as shown in Figure 1. At intermediate temperatures (~ 96°), these protons give rise to two well-separated bands. At lower temperatures (<-104°) four chemical shifts are discernable. The 63 MHz ¹³C spectra of I at various temperatures are shown in Figure 2. Where, analy a single process is abserved and each of the 1^3 C lines, with the exception off the carbonyl carbon band, splits at law temperatures late equal-intensity doublets.

3613

The ¹H and ¹³C spectra of I are inconsistent with the boat-boat conformation, which, because of its C_g symmetry, cannot exhibit more than two chemical shifts for the CH_20 protons or more than one shift for the CH_20 carbons. The results are consistent with a boat-chair, provided that the carbonyl and ether functions do not lie on the plane of symmetry of the boat-chair skeleton.

Chemical shift and kinetic parameters for the proton and carbon spectra are given in Table I. It is clear that the higher-temperature process observed in the proton spectrum has no effect on the carbon spectrum. Therefore this process, with a ΔG^{\ddagger} of 9.0 ± 0.2 kcal/mole, corresponds to a net exchange of two methylene protons on the same carbon atom and can be referred to as a ring inversion.

Nucleus Observed	Table 1. Mai Rinetic parameters for okacycrooctan-5-one			
	Chemical Shift Separation in Hz at (°C)	Coalescence Temperature (Tc) in °C	k (sec ⁻¹) at Tc	ΔG [‡] (kcal/mole) at Tc
1 _H	68 ^a (-96°)	-88 ± 3	150	9.0 ± 0.2
1 _H	80 ^a (-126°)	-104 ± 3	180	7.9 ± 0.2
¹³ c	477 ^b (-125°)	-97 ± 3	1060	$7.9 \pm 0.2 \\ av. 7.8 \\ 7.7 \pm 0.2 $

Table I. Nmr kinetic parameters for oxacyclooctan-5-one

^a for protons on C-2 and C-8; ^b for C-3 and C-7 carbons.

The lower-temperature process, with a ΔC^{\ddagger} of 7.8 ± 0.2 kcal/mole, when taking place rapidly on the nmr time scale, introduces a time-average element of symmetry, which must be either a plane of symmetry or a C₂ axis passing in either case only through the C=O and ether functions. If the mechanism responsible for this process is a series of boat-chair \rightarrow twistboat-chair \rightarrow boat-chair cycles, as has been postulated in the analagous cyclooctanone situation,³ the element of symmetry introduced is the C_s plane, and the overall process can be described most simply as a conformational racemization of a chiral conformation.

The I_{bc} conformation fits not only the nmr evidence presented above, but also the dipole moment (4.09D)¹ of I. Unsymmetrical boat-chairs other than I_{bc} are unfavorable because they should have much more non-bonded repulsion than does I_{bc} . Finally, an unsymmetrical crownfamily form is quite unlikely for I since it would be expected to show only a single process down to at least -160°.⁵

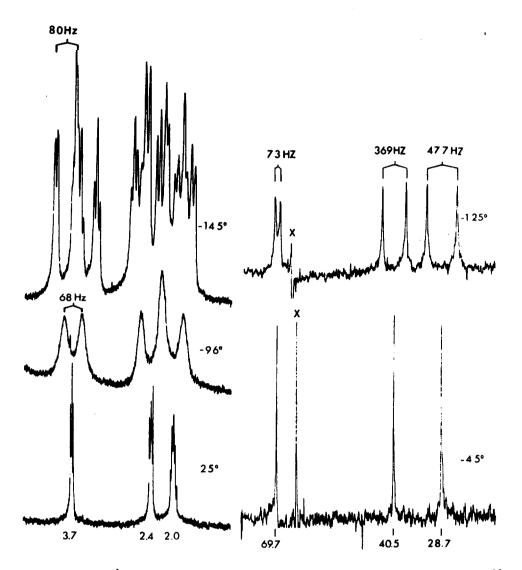


Figure 1. 251 MHz 1 H nmr spectra of 5-oxocanone in a mixture of CHCl_F and CHClF₂. The scale is ppm downfield from internal TMS.

Figure 2. 63.1 MHz Fourier-transform 13 C nmr spectra of 5-oxocanone in CHCl₂F. Protons are noise decoupled and 250 free induction decays were accumulated. The scale is ppm downfield from internal TMS. The carbonyl ¹³C is at 218 ppm and is not shown. The line marked by an X is a spurious beat frequency.

The conformational barriers occurring in I are each about 1.5 kcal/mole higher than the corresponding barriers in cyclooctanone.³ This is understandable since the transannular interaction between the carbonyl group and the ether oxygen in I_{bc} is very likely to be greatly reduced in the transition states for the conformational processes occurring in I. Even higher conformational barriers can be predicted for <u>N</u>-methylazacyclooctan-5-one, since the transannular interaction in this compound is known from infrared measurements to be much larger than in I.⁶

Acknowledgement: This work was supported by the National Science Foundation, Grant No. 27241.

References

- 1. N. J. Leonard, J. W. Milligan and T. L. Brown, <u>J. Amer. Chem. Soc.</u>, 82, 4075 (1960).
- F. A. L. Anet in "Conformational Analysis", by G. Chiurdoglu, Ed., Academic Press, New York, N. Y., 1971, p. 15; J. E. Anderson, E. S. Glaser, D. L. Griffith, R. Knorr and J. D. Roberts, J. Amer. Chem. Soc., 91, 1386 (1969), P. Groth, Acta. Chem. Scand. 19, 1497 (1965), J. V. Egmond and C. Romer, <u>Tetrahedron</u>, 25, 2693 (1969), H. B. Burgi and J. D. Dunitz, <u>Helv. Chim. Acta.</u>, 51, 1514 (1968).
- F. A. L. Anet and M. St. Jacques, <u>J. Amer. Chem. Soc.</u>, <u>88</u>, 2585, 2586 (1966); F. A. L.
 Anet, M. St. Jacques and P. M. Henrichs, <u>Intra-Soi. Chem. Rep.</u>, <u>4</u>, 251 (1970).
- 4. F. A. L. Anet and P. J. Degen, J. Amer. Chem. Soc., 95, 1390 (1972).
- 5. J. B. Hendrickson, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 7036, 7043, 7047 (1967).
- N. J. Leonard, R. C. Fox, M. Oki and S. J. Chiavarilli, <u>J. Amer. Chem. Soc.</u>, <u>76</u>, 630 (1954).